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ABSTRACT. A coupled analytical/numerical procedure for prediction of
solute transport in heterogeneous media is described. The procedure con-
sists of an analytic solution of the hydraulic equations, followed by a
numerical solution for soTute transport using the method of characteris-

Stics. The characteristics are determined by fourth-order Runge-Kutta and
. predictor-cirrector algorithms. Accuracy of solute transport calculation

is enhanced by the fact that fluid velocity can be directly obtained at a
ion undetermined points in the flow field.

The solute transport process is considered to be entirely advective,
neglecting the effects of mechanical dispersion and molecular diffusion.
Evidence is presented to demonstrate that purely advective processes in
both heterogeneous and homogeneous media can produce large "apparent dis-
persion." Such dispersion is shown to b4, easily capable of overwhelming
any reasonable estimates of dispersion or diffusion based upon laboratory
analyses of homogeneous media. For groundwater contamination problems, it
is concluded that precise definition of the spatial variability of hydrau-
lic properties is crucial to the accurate determination of the trajectory
of contaminated waters. (

BACKGROUND. At the scale of individual grains, the transport of a
conservative solute through a porous medium is clearly an advective
phenomenon. Solute particles are wafted along by fluid as it flows overp. tortuous routes in the general direction of the potential gradient. Close
observation of the movement of initially adjacent solute particles would

reveal their tendency to become separated. Contributing to the separation
one would observe: (a) random bifurcation of pore channels, (b) a large
range of fluid velocities across individual pores, and (c) differences of
fluid velocity from one pore to another. To a very minor extent, pore
scale advection is supplemented by molecular diffusion.

For a fluid of nonuniform concentration which saturates a porous
medium, the separation of solute particles amounts to mixing, resulting in
changes of local solute concentration. Buyevich et al. (1969) noted that
the pore scale advective mixing process is very much like the mixing re-} ulting from ordinary fluid turbulence.

The usual meterial continuum approach to porous media modeling defines
solute transport in terms of macroscale mass fluxes (Bachmat and Bear,
1964). Although the entire process is fundamentally advective at the pore
scale, the macroscale description of advection can represent only an aver-
age transport, strictly in the direction of the potential gradient. The
pore scale mechanisms listed above as (a) through (c) cannot be accounted
for by macroscale advection alone.
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Dispersion is an additional macroscale solute flux whose purpose is to
account for the pore scale mechanisms which cause mixing. Dispersive flux
is assumed to be proportional to concentration gradient.

Harleman et al. (1963), Kiotz and Moser (1974), and others have con-
ducted laboratory experiments on columns of homogeneous media to determine
the relative magnitudes of macroscale advection and dispersion. Their re-
dults are presented as a correlation between the magnitude of dispersion,
the potential gradient, and the physical properties of fluid and media.

Many investigators (c.g. Pinder, 1973; Konikow and Bredehoeft, 1974)
have applied macroscale advection-dispersion models to field problems.
Calibration of these models generally leads to the assumption of dispersive
fluxes which are orders of magnitude greater than would be expected on the
basis of lab analyses of porous material samples. Gelhar et al. (1979)
reiterate the conclusion that this discrepancy is related to local hetero-
geneity of porous medium hydraulic properties. The experimental results of
Skibitski and Robinson (1963) substantiate this by illustrating the
dominant effect of heterogeneity on the transport of dye in sand flumes.

THEORV. The aim of this paper is to demonstrate a coupled analyti-
cal/numerical technique for predicting the transport of conservative
solutes in heterogeneous media. The approach presumes that genuine disper-
sion is negligible compared to true macroscale advection when that advec-
tion fully accounts for heterogeneity and nonuniform flow.

In order to accurately determine the effect of heterogeneity on macro-
scale advection, an analytic solution for hydraulic potential is obtained.
Application of Darcy's law y'ields an analytic expression for average
linear velocity which can be evaluated at a priori unspecified points x.
As part of the technique, medium properties are accounted for as
known (or interpolated) explicit functions of X. Given an accurate de-
scription of-flow field, streamlines are calculated by applying the-method
of characteristics. Advection is determined from the rates of flow along
the streamlines.

Example problems are used to demonstrate the fact that genuine disper-
sion can be easily overwhelmed by the effects of heterogeneity and non-
uniform flow. In each example, flow is assumed steady and horizontal. The
analyses apply to confined aquifers and also to phreatic aquifers where the
Dupuit assumptions and lio'ar approximation are valid.

Advection-dispersion equation (numerical solution). The control
volume approach can be used to derive the advection-dispersion equation
(Daly, 1979): 

AA

- - V • (DVC) + *• VC r+ (-C)(1)
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S= effective porosity, dimensionless;
C - mass fraction of the pore fluid; the ratio of the mass of solute

in a given volume to tht total mass of fluid in that volume,
dimensionless;

D - dispersion coefficient tensor, L2/T;

+
v specific discharge,L/T;

C= contaminant niass source/sink strength representing the exchange

of mass betwcen fluid and porous matrix, M/L3T;

p - iluii density, M/L3;

q = recharged fluid mass strength, M/L 3T > 0;

C - mass fraction of recharged fluid, dimensionless.

Considering (1), it is clear that the effect of fluid withdrawals is not
felt directly through the teems on the RHS of the equation. However, with-
drawals do affect the transport by modifying the flow field
(represented in (1) by V).

If dispersion is neglected compared to macroscale advection, (1) can
be written, for the simple case of no source/sink terms, as:

ac c +
+ vX- + v -- 0 (2)

Application of the method of characteristics transforms (2) into the equi-
valent system of ordinary differential equations:

v
dx _ x
dt * - f(x,y,t) (3)

J I v

dt _ _ g(xy,t) (4)

dt

IS Equations (3) and (4) are used to determine the trajectories (also called
the characteristic lines) of fluid particles in the flow field. Equation
(5) is simply a statement of the fact that in the absence of sources or
sinks the concentration of fluid particles remains constant. It is impor-
tant to note that (3), (4), and (5) are not independent. Equation (5) is
only valid along the trajectories defined by the joint solution-of (3) and
(4).

Determination of the trajectories of fluid particles is done by
numerically solving the linked system of (3) and (4). A fourth order
Runge-Kutta technique is used to start the procedure which can be continued
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by a more efficient predictor-corrector scheme. The numerical solution
method starts at a point (xo,yo ) at time zero. The concentration is
defined at all such points by an initial condition. Using a time step At,
successive points (Xn, yn) along the trajectory of the particle which
began at point (xo, yo) are obtained. The Runge-Kutta algorithm for
accomplishing this is:

xn+1 = x n + (a, + 2a2 + 2a 3 + a4 ) (6)

Yn+l M Yn + (b, + 2b2 +2b 3 
+ b4 ) (7)

where:

a, = At f(xy,tn) (8)

b, - At g(xn,Y ,t) (9)

a2 - At f(x n + al/2, Yn + b1/2, tn + At/2) (10>

b2  At g(x + a,/2, yn + b1/2, t + At/2) (11)

a3  At f(x + a2/2, yn + b2/2, t + At/2) (12)

n n
b 3  At f(x2 + )At/2) t3)

a4= At f(xn + a3, yn + b3, tn + At) (14)

b4 - At g(x n + a3, Yn + , t + At), (15)

and f and g are defined in Equations (3) and (4).

Runge-Kutta algorithms belong to the set of self-starting numerical
solution methods. Self-starting means that th- determination of all suc-
cessive points (xn, yn) y equireS only the starting point (xo, yo)-
Ia other words, calculation of xn and yn depends only on thb known

values x and Yn-1 The set 6f non self-starting methods require the
values axn, yn) to b given at more than one po int along he trajec-

tory. For example, a fourth order- predictor-corrector algorithm called
Milne's method requires the values x1, Xl, x2, x3, Yo, Y1, Y2, Y3 tocalculate successive values of x. and Yn.

76



Beside the question of starting values, the efficiency of the calcula-
tion procedure is an important factor in selecting a numerical method. It
turns out that M~ilne's algorithm is significantly more efficient than the
Runge-Kutta method, although both are fourth-oreer accurate. One numerical
procedure proposed in this paper is that which takes advantage of the
Runge-Kutta self-starting feature and the efficiency of Milne's method.
Given a starting point (x0, yo), the Runge-Kutta procedure is used to
obtain (xj, yj), (xZ2 , y2),, (x3, Y3). At that stage the necessary starting
values are available for Milne's method which is then used to generate suc-
ceeding points.

Non self-starting methods typically assume constant At, whereas self-
starting methods allow for change of At at each time step. For problems in
which the frequent change of At is desira±ble, exclusive use of a self-
starting method, such as the Runge-Kutta algorithm, is advised.

Milne's predictor-corrector method consists of two steps. Fist, pre-
dicted estimates of x,+, and ynlare calculated. Let-these-be densoted
X*,+1 and y*n+l. Second, Lhe predicted values are corrected to obtain
the final values xn~l and Yn+1 at the end of a time step. The

algorithm isz

=* K 3  2x ~ -x' + 2x'1 (16)n+1 n- 3 n n-1. n-21

Y*+ 4A [2yn' -n_ + 2yn2] (17)

then:

X 1  X 1 + [x* 1 + 4x I+ x 1  (18)

y'+ ~- + ~- [v*~1 + 4y' + y' 1] (19)

where:

n I

Ji g(x1 , 3'n tn) (1

V t~onsiderat-_oii of the ~unge-Kutta and the Milne algorithms shows that
iiClv'8 method requi~res only two evaluations of f and g per time step,
-whereav, Rne-);utt;A requires -four. This- makes Milne's method more ef-
ficient.

Ste-ady io between a source/sink Zar Coo~sider the -8teady flow o i
fluid %twte~a a 1ine source and a line sink of equal -itrength Q,
ceparated by a distance - a. Let the source/sink pair be located in a

hog~oI * tantroplc, medium, of infinite extent, and saturated thickness
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b. Suppose that at time zero the concentration of solute at the source is
changed from zero to Co .

The well-known time dependent solution for the concentration of fluid
recovered at the sink depends on the travel time of fluid particles (e.g.
Charbeneau and Street, 1979). Travel time t is expressed as a function of
0, the direction of travel of a particle as it issues from the source. If
the angle B is measured from a line between the source and sink, then:

t Q s [- 6 cnte] e > 0 (22)

where 0 is the effective porosity. For 0 = 0, the minimal travel time tm
is:

t (23)= 3Q

At time t > t. the relative concentration of recovered fluid is:

C I
c e0(t) (24)C

where the function 0(t) is defined by (22).

The analytical solution to the sour-ie/sink problem was compared with a
numerical solution obtained via the method of characteristics and the
Runge-Kutta algorithm. Variables were assigned the values: a = 500 m, Q
10000 m3/days, b - 50 m, $ - 0.2. The numerical calculation began with At
= 0.05 day; subsequent values of At were selected so as to allow fluid
particles to travel about 10 meters per time step. Both analytical and
numerical results are plotted in Figure 1; note that the two solutions
practically coincide.

Since the concentration of fluid recovered at the sink varies with
time, the transport may be viewed as a mixin process. In- fact, this
mixing or "apparent dispersion" is obviously-just the result of nonuniform
flow. The source/sink example leads to tke conclusion that unrepresented-nonuniform flow may result in considerable unexplained "dispersion."

STransport in heterogeneous media. Consider the transport of a conser-
vative solute in a two dimensional steady flow field. The flow domain is
assumed to be rectangular, L by H, having the distributions-of transmis-
sivity- and effective porosity as 8hown-in-Figures 2 and 3.

Solution -of -the. transport problem _begins -with- the determination of
flow field, which in turn begins with finding the hydraulic potential.
Using the linearized Boussinesq equation, Daly and Morel-Seytoux (1981)
determined an analytic solution to this problem subject to the boundary
conditions on -the potential h:

Vb(0,') -0 h(t,) A
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17 Figure 1. Relative concentration of fluid at the producing well of a

source-sink pair.
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Figure 2. Distribution of aquifer trainsrissivity [m2/dayj.
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Figure 3. Distributionl of aquifer porosity [dimenlsionless).
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3h
-- (x,0) (x,H) =0 (25)

Their solution is:

2 N
h(x,y) - A(n,O) sin -- +

M N
+ nLi A(n,m) sin -L- cos (26)

m7-- n--1

where the Pourier coefficients A, dependent on medium heterogeneity, are
found by the application of an integral transform method.

The specific discharge (and average linear velocity) associated with
the potential distribution of (26) is obtained from Darcy's law. Equation
(26) is easily differentiated to yield the hydraulic gradient. For the
problem presented here: L - 2500 m, H = 1800 m, X = 10 m, and saturated
thickness is assumed constant and equal to 50 m. Figure 4 is a vector dia-
gram of specific discharge.

The trajectories of fluid particles (located initially along the right
hand vertical edge of Figure 4) were calculated by the Runge-Kutta, predic-
tor-corrector method. A constant time interval of 100 days was used. The
calculated trajectories define the streamlines shown in Figure 5; triangles
are used to locate particles at 100-day intervals.

The movement of - sharp concentration front through the medium is
shown in Figure 6. It is assumed that at time zero the corcentration of
fluid along the right hand boundary was instantaneousiv --hanged from zero
to Co . In the figure, the front is plotted at 200-day intervals. The
movement of any particular point on the front is found by following that
point along its associated streamline.

Consider the fluid which exits the porou: medium at the left hand side
of Figure 4. The average concentration of that fluid can be determined by
calculating the time of breakthrough of many individual stream tubes. The
ratio of the outflow produced by the tubes which have broken through to the
total outflow can be obtained at any time. That ratio gives the relative
concentration of the fluid flowing out of the medium. Using many more
stream tubes than are shown in Figure 5, the calculation procedure was per-
f-rmed. The result is plotted as the solid line in Figure 7 (the "observ-
ed" breakthrough curve).

Using dispersion to account for the shape of the breakthrough curve.
Suppose that the existing heterogeneity of the preceding problem is
unknown. Suppose also that an experiment is conducted to determine a
breakthrough curve; the result is the "observed" breakthough curve of
Figure 7.
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c Figure 5. StreamlJine pattern for the flow field of Figure 4.
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Figure 7. Breal.through curves for the moving solute front of Figure 6.
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If the porous medium were assumed homogeneous, all streamlines in
Figure 5 would be parallel to the x axis. Flow would be steady and uniform
and the problem could be considered one dimensional. A solution to the one
dimensional advection-dispersion equation for steady flow has been obtained
by Ogata and Banks (1961). The differential equation is:
aC. , 2Ca-- - + u -=0 u> 0 (27)

at ax ax
subject to:

C(0,t) = Co; C(C*,t) = 0 (28)

and the initial condition:

C(x,0) = 0 (29)

where u = average linear velocity; D' 2D/4. After a change of origin, the
solution for the breakthrough curve is: at x = 0:

uLC _1 L-ut r L+ut
C 2 erfc- + e erfc (30)

0 2VD't 2VD'T

For the problem considered here L 2500 meters and

u 0.6745 m/day (31)

Several estimates of the coefficient D' can be made. The resulting break-
through curves are plotted in Figure 7 for the estimates D' = 50 and 100
m2/day. Note that these two curves give an approximate fit to the observed
breakthrough curve.

In a series of experiments dealing with one dimensional dispersion,
Harleman et al. (1963) correlated dispersion coefficient with flow and
media properties. A variety of unconsolidated materials were used. The
flow and transport problem were such that the analysis of Ogata and Banks
(1961) could be applied. Determining the breakthrough curve and the aver-
age linear velocity gave Harleman et al. the ability to estimate D' from
Equation (30). Their correlation formula predicts for sand grains:

D-= 0.90 (Rd )1.2 (32)V 50

w"ere: v is the kinematic viscosity [L2/T],luldsoR - d0 (33)

d50  V

and d50 is the 50% grain size of the porous material.

If the shape of the observed breakthrough curve of Figure 7 is assumed
to be the result of dispersion, (32) can be u3ed to estimate d50 for the
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porous material. With D' 1 100 m
2/day, d5 0 = 49.32 m; fbr D' 

= 50 m
2 /day,

d 50 = 27.68 m.

CONCLUSIONS. The above results dramatically 
show that: (a) even

modest heterogeneity of 
porous media properties 

cannot be properly ac-

counted for by dispersion, 
and (b) genuine dispersion 

is easily overwhelmed

by the effects of heterogeneity.
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